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1 Causality

You all have already discussed causality at some length in other classes, so
we won’t get all philosophical here. The important thing to remember is
that time-series data provide both opportunities and challenges for address-
ing causality.

1.1 Granger Causality: The Concept

“Granger causality” is a term for a specific notion of causality in time-series
analysis.1 The idea of Granger causality is a pretty simple one:

A variable X Granger-causes Y if Y can be better predicted using
the histories of both X and Y than it can using the history of Y
alone.

Conceptually, the idea has several components:

• Temporality: Only past values of X can “cause” Y .

• Exogeneity: Sims (1972) points out that a necessary condition for X
to be exogenous of Y is that X fails to Granger-cause Y .

• Independence: Similarly, variables X and Y are only independent if
both fail to Granger-cause the other.

Granger causality is thus a pretty powerful tool, in that it allows us to test
for things that we might otherwise assume away or otherwise take for granted.

1Clive Granger, the UCSD econometrician, gets all the credit for this, even though the
notion was apparently first advanced by Weiner twenty or so years earlier.
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1.2 Granger Causality Testing

Freeman (1983) discusses two sets of tests for determining Granger causality.

1.2.1 ARIMA models/Cross-Correlations

If the series in question are stationary ARMA(p,q) processes:

φpY
LpY Yt = θqY

LqY uY t (1)

φpX
LpXXt = θqX

LqXuXt (2)

then we can consider the cross-correlation functions of the two series. In
particular, under the null hypothesis of independence (no Granger causality
in either direction), the cross-correlations of the innovations uXt and uY t will
be zero at all positive and negative lags.

To implement this approach is simple; one:

1. Estimates an appropriate ARIMA model for each series, then

2. estimates the cross-correlations of the estimated ûs.

In Stata, the cross-correlation command is -xcorr-. The approximate stan-
dard errors of the cross-correlations are just 1√

T
. Cross-correlation values

larger than ±2 standard errors from zero indicates the presence of Granger
causality (i.e., a lack of Granger -independence).

While the ARIMA/cross-correlation approach is fine, it has a few drawbacks:

• The method is sensitive to the choice of lag length for the cross-correlations,

• The test can’t tell you the directionality of causality, only the presence
or absence of it;

• The statistic lacks power, as compared to the regression-based tests
discussed below.

So, we generally don’t use this approach a lot.
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1.2.2 The “Direct Granger Method”

As the name suggests, we can also assess Granger causality in a more direct
way: by regressing each variable on lagged values of itself and the other, e.g.:

Yt = β0 +
J∑

j=1

βjYt−j +
K∑

k=1

γkXt−k + ut (3)

We can then simply use an F-test or the like to examine the null hypothesis =
0 Critical is the choice of lags J and K; insufficient lags yield autocorrelated
errors (and incorrect test statistics), while too many lags reduce the power of
the test. This approach also allows for a determination of the causal direction
of the relationships, since we can also estimate the “reverse” model:

Xt = β0 +
J∑

j=1

βjXt−j +
K∑

k=1

γkYt−k + ut (4)

Also, it is important to remember that Granger causality testing should
take place int he context of a fully-specified model. If the model isn’t well-
specified, “spurious” relationships may be found, despite the fact of no ac-
tual (conditional) relationship between the variables. We’ll talk more about
Granger causality when we discuss VAR models later in the course.

2 Time Series and Spurious Regressions

2.1 What it is

Consider the regression of two I(1) series:

Y1t = β0 + β1Y2t + et (5)

where:

Y1t = Y1t−1 + u1t

Y2t = Y2t−1 + u2t,

u1t, u2t ∼ N(0, σ2
ut

) , Cov(u1t, u2t) = 0
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The problem of spurious regressions was first addressed by Granger and New-
bold (1974) (G&N). The intuition is relatively simple: because integrated
series have a tendency to “wander”, it is often the case that a regression
of one on the other will appear to yield significant results, even if the two
series are completely independent. G&N’s study was purely a simulation;
subsequently, Phillips (1986) showed that there is an analytic basis for this
result as well: under very general conditions for the error terms, sample mo-
ments of the Y variables converge not to constants, but rather to functions of
Brownian motion. This means that standard distributional results for OLS
fall completely apart:

• Conventional t-statistics (e.g., β̂

s.e.(β̂)
) do not have limiting distributions,

but instead diverge as T →∞,

• this means that there are no asymptotically correct critical values for
these tests, and

• the rejection rate will (in general) increase with the sample size used,
consistent with G&N.

• In contrast, R2 does have a limiting distribution, and that the value of
the Durbin-Watson statistic d goes to zero as T →∞.

The last two points are also consistent with G&N, who note that their Monte
Carlo studies produced regressions with low-to-moderate R2 statistics, and
very low D-W statistics.

Nor surprisingly, the driving force behind the spurious regression phenomenon
is the error term et. In particular, its pretty easy to see that, since the error
is itself a combination of I(1) processes, it too will (generally) be integrated:

et = Y1t − β̂0 − β̂1Y2t

= −β̂0 −
∑

u1t − β̂1

∑
u2t (6)

This means that we can “solve” the problem of spurious regressions by simply
including a lagged Y1 on the right-hand side of the equation (or, equivalently,
by differencing the equation):
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Y1t = β0 + β1Y2t + β2Y1t−1 + et (7)

This model eliminates the integration in the es, and allows for “normal”
OLS-based estimation and testing.

2.2 Spurious Regression: An Example

Here’s an example, using made-up data, in Stata 6.0:

. set obs 500

obs was 0, now 500

. gen t= n

. gen y1=0

. gen y2=0

. gen u1=invnorm(uniform())

. gen u2=invnorm(uniform())

. replace y1=y1[ n-1]+u1 if y1[ n-1] =.

(499 real changes made)

. replace y2=y2[ n-1]+u2 if y2[ n-1] =.

(499 real changes made)

Regressing Y1 on Y2 yields the following results, for different lengths of T :

N β0 β1 t-statistic for β1 R2 F D-W statistic
100 1.50 -0.41 -4.75 0.19 22.6 0.29
250 1.80 -0.27 -9.10 0.25 82.8 0.10
500 3.18 -0.20 -7.63 0.10 58.3 0.06
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Despite the fact that the two series were created independently, the fact that
each is a random walk induces a correlation in them. While the us for the
500 observations are correlated at only 0.04 (p > .20), the two series correlate
at -0.32 (p < .001).

That the problem can be solved by including a lagged Y1 is also easily shown
by estimating the model in (7):

N β1 t-statistic for β1 β2 t-statistic for β2 R2 D-W statistic
100 -0.02 -0.45 0.89 18.7 0.82 2.24
250 0.004 0.047 0.98 51.8 0.94 2.09
500 -0.002 -0.35 0.97 88.7 0.95 2.08

2.3 Wrap-up

The fact of spurious regressions is the major reason why, in many instances,
analysts automatically difference variables they believe to be I(1). In fact,
however, there is a class of multivariate models where differencing I(1) vari-
ables is not recommended. If the regression of two I(1) variables yields errors
which are not I(1) (that is, stationary), then the series are said to be cointe-
grated; in that case, differencing is NOT the thing to do. We’ll talk about
this more in the future.
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